
Rock-Wall Climbing AI
	

ROCK-WALL CLIMBING AI

CS 297 Report

Presented to

Dr. Chris Pollett

Department of Computer Science

San Jose State University

In Partial Fulfilment

Of the Requirement for the Class

CS297

By

Ujjawal Garg

May 2018

Rock-Wall Climbing AI
	

TABLE OF CONTENTS

Introduction…………………….…………................……….……………………………….…1

I. Deliverable I: Q-Learning.…….….……....…………...…………………………….…2

II. Deliverable II: MuJoCo Rock Wall Generator………………………...…………......3

III. Deliverable III: RockClimbEnv Gym Environment…....……………....……….…….4

IV. Deliverable IV: DDPG Algorithm……….….……...……….………………….……….5

V. Conclusion……….………...……………………....……..…………………….……….7

References………….…………...…….……...…………..........…………………………….….8

Rock-Wall Climbing AI

1	

Introduction

Reinforcement Learning is a field of Artificial Intelligence that has gained a lot of

attention in recent years. In July 2017, Silver et.al published a paper [1] and video [2]

showing a simulated humanoid body trained to navigate through a set of challenging

terrains, using reinforcement learning. This project will use a similar approach to train a

simulated humanoid body to climb a rock wall. The process of rock climbing is more

complex than walking because the viable solution space is much more constrained, but

the search space is just as large.

Unlike supervised learning, where we use some training data as input, in

reinforcement learning we only have access to an environment where each actor or

agent can perform a set of specific actions. This environment is considered as a MDP

(Markov Decision Process), where we do not know the states we can visit and also the

transition function from each state is not known. Each action performed has a reward

that depends on the new state and previous state. The goal of reinforcement learning is

to learn this reward function, which is generally referred to as policy π. Using this reward

function, an agent can choose the actions which leads to best rewards.

The final goal of this semester is to have learned the fundamentals of

reinforcement learning and do research on existing literature. Through this, I will have

developed a baseline architecture of my final project, which I can then tweak and train

to train the simulation model.

Rock-Wall Climbing AI

2	

I. Deliverable 1: Q-Learning implementation for Tic-Tac-Toe

The objective of this deliverable was to develop a python module for an agent

and a bot that uses the Q-Learning technique to train the agent on how to play Tic-Tac-

Toe game. Q-Learning [3] is an off-policy learning algorithm, where we model the value

function as a Bellman equation, where the reward for performing action a is calculated

as the instant reward for entering the new state plus the maximum discounted future

reward that can be obtained in the new state. This equation is solved by creating a table

of Q-values. This equation is given as:

! ", $ = 	'($ + 	γ	+$",-!("/, $/)
Here, ! is the function that we want to learn. '(is the instant reward of value of

performing action $ in state ", γ	is the discount factor, and "′ is the next state. There are

two scripts in the module: The first Q_Learning_Tic_Tac_Toe.py uses a simple bot to

train the agent, and the output is a model file that contains the Q-values in a table. The

second file Tic-Tac-Toe-Player.py uses the model generated by first to play against a

human player. Value of 2 is taken as 0.1. Training the agent for 50000 games created

5000 entries in the Q-table on average. Considering there are only 5812 legal states in

Tic-Tac-Toe, the agent performed very well and won 14 out of 15 games on average.

Rock-Wall Climbing AI

3	

II. Deliverable 2: MuJoCo Rock Wall Generator

The goal of this deliverable was to develop a python script to generate an

environment in which our humanoid simulation can learn to climb the rock wall. There

are several libraries and packages available for this purpose that provides the physics

and simulation capabilities. Out of these two packages: MuJoCo [4] and Bullet Physics

[5] stand out, mainly due to their compatibility with OpenAI Gym. OpenAI Gym [6] has

used MuJoCo since its beginning. However, MuJoCo requires a paid license, although it

is free for students. The support for pybullet was added with introduction of Roboschool

framework which was supposed to replace Gym, but it has not been updated for almost

a year. So, we decided to use MuJoCo with student license. The final outcome of this

deliverable was a python script to generate an xml in MJCF format which can be run via

the MuJoCo simulator.

The MJCF file contains an XML tree created by nested body elements. The

generated world contains a single wall that has different types of rock climbing holds

placed in a semi-random fashion. The rock wall is specified as a geom element of type

box within the main body. The rock-climbing holds are specified as geom element of

type mesh. The mesh files for the holds were obtained from sites like thingverse.com

[7], where people make these files for 3-D printing. To make the pattern semi-random,

we use the following method:

1. Divide the wall into tiles of size 1x1, and traverse the tiles from bottom left to top right.

2. With 50% probability place a hold at a tile, and shift it along x-axis by 6% on average.

3. Set y-position of each hold 0.2 distance above the hold below it.

Rock-Wall Climbing AI

4	

To generate the xml file, the etree python library was used. This xml file could then be

supplied to the MuJoCo simulator to view the result. The figure below shows a sample

output of the deliverable.

Rock-Wall Climbing AI

5	

III. Deliverable 3: RockClimbEnv Gym Environment

The objective of this deliverable was to explore the OpenAI gym environment,

and to develop a gym environment for generating a random rock wall. This OpenAI gym

environment can then be used to train a humanoid on how to climb the rock wall. One of

the main benefit of using OpenAI Gym is that it will be much easier for someone else to

replicate my work and build upon it. The environment is shown in the picture below.

This gym environment provides a framework where we can choose an action for the

Humanoid. This action is in the form of value for 24 joint motors, each in range [-1, 1].

Changing these values enables the movement of humanoid. Actions are drawn

randomly from the action space. Based on action performed, and resulting new state

agent is given a reward. This reward depends on the z position of the humanoid body.

Rock-Wall Climbing AI

6	

III. Deliverable 4: DDPG Algorithm

The goal of this deliverable was to choose a policy gradient algorithm and

implement it. Algorithms like Q-Learning and DQN (Deep Q-Networks) can work only on

discrete and low-dimensional action spaces. For this reason, they are not suitable for

continuous control tasks like robot or humanoid movements, etc. Policy gradient

methods with deep function approximators have shown remarkable success in

continuous control tasks. Unlike value-based methods, here we learn and optimize for

policy function directly. For this deliverable, I implemented the DDPG [8] (Deep

Deterministic Policy Gradient) policy gradient algorithm.

DDPG is a model-free, off-policy, actor-critic approach based on the DPG

(Deterministic Policy Gradient) method. Model-free means that the underlying dynamics

of the environment are unknown and are learned by exploring. Off-policy means that

actions are chosen from a behaviour policy that is different from the policy being trained.

In an actor-critic approach, the actor represents the policy function, and specifies the

action to be performed given the current state of the environment. The critic represents

the value function which specifies the resultant reward and produces a signal error to

criticize the actions made by the actor. The deterministic part comes from the fact that

we training to learn the Deterministic policy. In algorithms like DQN, we can use

stochastic policy and learn select the action based on the following eq.:

$3 = +$",	!∗ ∅(63 , $; 	8)

Rock-Wall Climbing AI

7	

But, this equation is not practical for continuous action spaces. Using a deterministic

policy allows us to use the equation:

$3 = 	9(63|8;)

Also, similar to the €–greedy approach used in DQN, a noise process < is used to

ensure sufficient exploration:

$3 = 	9 63 8; +	<3

 The complete algorithm is shown below:

Rock-Wall Climbing AI

8	

Conclusion

During this semester, I have completed the preliminary steps required towards CS298. I

know what needs to be worked on during next semester. I have developed and explored

the OpenAI Gym and Baselines libraries, which I will be using to perform the training. I

have researched the previous work that has been done in this field. In detail, I have

implemented the Q-Learning and DDPG algorithms, and trained a humanoid simulation

to take the first step towards walking. Through these, I have gained knowledge and

exposure to deep reinforcement learning concepts.

 For next semester, I need to determine how to setup the rewards inside the gym

environment that I have created. Currently, the reward is based on the z position of the

humanoid body. However, a better way could be setup incremental reward such that

goal changes from one hold to another as the humanoid starts climbing. In this way, the

solution space that needs to be explored can be reduced. Further, I will need to try

different configurations for the hyper-parameters while training the simulation. Also,

based on the experiments that I did using the baseline algorithms, I might need to use a

HPC cluster to do the training. Currently, on my MacBook Pro, it took 3-4 hours for 500

iterations of DDPG algorithm. After 500 iterations, humanoid only learned to take one

step. For more complex tasks like rock-climbing, much more training would be required.

	

Rock-Wall Climbing AI

9	

References	
	

[1]		D.	TB,	S.	Sriram,	J.	Lemmon,	J.	Merel,	G.	Wayne,	Y.	Tassa,	T.	Erez,	Z.	Wang,	A.	.	S.	M.	Eslami,	M.	
Riedmiller	and	D.	Silver,	"Emergence	of	Locomotion	Behaviours	in	Rich	Environments,"	arXiv,	2017.		

[2]		DeepMind,	"Emergence	of	Locomotion	Behaviours	in	Rich	Environments,"	2017.	[Online].	Available:	
https://youtu.be/hx_bgoTF7bs.	

[3]		P.	Dayan	and	C.	Watkins,	"Q-Learning".		

[4]		E.	Torodov,	T.	Frez	and	Y.	Tassa,	"MuJoCo:	A	physics	engine	for	model-based	control".		

[5]		"Bullet	Physics	SDK,"	[Online].	Available:	https://github.com/bulletphysics/bullet3.	

[6]		OpenAI,	"OpenAI	Gym,"	[Online].	Available:	https://gym.openai.com/.	

[7]		"Rock	Wall	hold	1.0,"	[Online].	Available:	https://www.thingiverse.com/thing:34331/#collections.	

[8]		T.	P.	Lillicrap,	J.	J.	Hunt,	A.	Pritzel,	N.	Heess,	T.	Erez,	Y.	Tassa,	D.	Silver	and	D.	Wierstra,	"Continuous	
control	with	deep	reinforcement	learning,"	2015.		

	

	

